Contains Duplicates

 Leetcode - 217/219/220
Contains Duplicate - I/II/III

1. Contains Duplicate - I

For example given an array [1,2,3,4,1] return true as 1 is repeated , return false all the elements in the array are unique. 

Solution 1: Brute-Force method - O(n2) time, O(1) space [TLE]

While iterating the array check if the element  is repeated by comparing it with the rest of elements, if the values compared are equal return true. If the whole the array is traversed that means no element is repeated ,hence return false.
    
        bool bruteForce(vector<int>& nums) {

            for(int i = 0; i < nums.size(); ++i) {

                for(int j = i + 1; j < nums.size(); ++j) {

                    if(nums[i] == nums[j]) {

                        return true;

                    }

                }

            }

            return false;

        }


Complexity analysis:
In average case the algorithm runs in O(nlogn) time as the duplicate may lie in between in the array. In the worst case when there are no duplicates for every element we traverse the whole array comparing if it contains duplicates so the time becomes O(n2) . Since we aren't using any extra space the algorithm uses O(1) space.

Solution 2: Presorting method - O(nlogn) time, O(n) space

We can solve the above problem using transform and conquer method. Instead of comparing each and every element with other elements, we can sort the given array (transform) . After sorting all duplicates will be arranged together, now we can compare each element with its previous element in O(n). If the numbers are repeated then return true and if all elements are unique return false.
      bool presorting(vector<int>& nums) { // O(n logn)
          sort(nums.begin(), nums.end()); // O(n logn)
          for(int i = 1; i < nums.size(); i++) {
              if(nums[i - 1] == nums[i]) return true;
          }
          return false;
      }

Complexity analysis:

Comparing takes O(n) ,sorting takes O(n logn) , hence the time complexity is max(O(n), O(n logn) ) which is O(n logn). Sorting takes O(n) space thus the space complexity O(n) .

Solution 3: Using balanced BST - O(n logn) time, O(n) space

The above problem can also be solved using containers(extra space). We use a set(balanced bst) to keep track of the visited element . While visiting each element check if the element is present in the set ,if yes return true else insert the element to the set.
    bool usingBalancedBST(vector<int>& nums) { // O(n logn) worst-case
    set<int> numsSet;
    for(int i = 0; i < nums.size(); i++) {
    if(numsSet.count(nums[i]) &gt 0) return true;
    numsSet.insert(nums[i]); // O(logn)
    }
    return false;
    }

Complexity analysis:

This  solution is only different in execution with respect to the previous .The time complexity is same as the previous one. This is because insert operation takes O(logn) time in a BST and every time almost n elements are inserted hence the algorithm takes O(n logn). Set takes space O(n)  ,hence the space complexity of O(n).

Solution 4: Using Hash table - O(n) amortized time, O(n) space

This solution is improvement to the previous solution . The only change is the container we use is an unordered set which uses hash table internally. This fact improves the time complexity to O(n) from O(nlogn) as insertion in a hash table is O(1) average case. The rest remains the same as previous solution.
    bool usingHashTable(vector<int>& nums) { // O(n) amortized cost
    unordered_set<int> numsSet; // Hash Table
    for(int i = 0; i < nums.size(); i++) {
    if(numsSet.count(nums[i]) > 0) return true;
    numsSet.insert(nums[i]); // O(1) amortized cost
    }
    return false;
    }

Complexity analysis:
This solution has a runtime of amortized O(n). This is because insert to a hash table takes O(1) amortized cost , so insertion of n elements takes O(n) amortized cost time . Hash table takes space O(n) ,hence the space complexity of O(n).

2. Contains Duplicate - II

For example, given an array [1, 2, 2, 1] and k = 2, for every index check if an duplicate exists at or within 2 elements next to index and at or within 2 elements before the index. The following subarrays are obtained: [1, 2, 2], [1, 2], [2, 2, 1], [1, 2, 2], [2, 1], [2, 2, 1].  We have subarrays with duplicate values and hence, the answer is True.

Solution 1: Brute-Force method - O(nk) time ,O(n) space [TLE]

A typical solution would be to follow the problem description i.e. create subarrays of size <= k+1 for every index and checking for duplicates in these subarrays. 
For checking duplicates in a k+1 elements window/subarray, we have an empty unordered set(as it uses a hash table which provides constant time basic operation) which is cleared after every index is processed. As we process a new element, if it already exists in the set, then it indicates a presence of a duplicate. If all indexes are processed successfully, then we have failed to find desired subarrays with duplicates.

        bool bruteforce(vector<int>& nums, int k) {

            int n = nums.size();

            unordered_set<int> set;

            for(int j = 0; j <=k && j < n; ++j) {

                if(set.count(nums[j]) == 1) {

                    return true;

                }

            set.insert(nums[j]);

            }

        

            for(int i = 1; i+k<n; ++i) { // O(n) times

                set.clear();

                for(int j = 0; j <= k; ++j) { // O(k) times for each i

                    if(set.count(nums[i+j]) == 1) {

                        return true;

                    }

                    set.insert(nums[i+j]); // O(1) time for one call

                }

            }

            return false;

        }



Complexity analysis:
To process every index we need to check for duplicates in a k+1 sized subarray starting from 0 sized subarray/window which takes O(k) time and this process needs to be repeated for every element in the array which effectively gives an time complexity of O(nk) or O(n2) as k<=n for the whole algorithm. It also consumes O(k) or O(n) as k<=n space for an unordered set.

Solution 2: Using Balanced BST - O(n logk) time, O(k) extra space

The Brute Force solution hurts because for every index to be processed it starts processing from zero sized window and progresses to a k+1 sized window. This can improved by using a constant sized sliding winow approach of size k+1. This helps as the approach uses information from previous state of the window and makes only minimum changes as much as needed to create a new window.
In this solution, we use a set which uses a balanced BST for internal implemenation. Initialize a window of size k+1 from beginning of the array and also insert them into the set. Then slide the winow by one element to the right. As k elements in the new window will be same as previous state of the window, we do not clear the set as in brute force, rather we just remove the element from the set which slid out of the window and insert new element that slid in into the window.
In the process, if an element to be inserted already exists, then it indicates a duplicate.

      bool orderedset(vector<int>& nums, int k) {

            int n = nums.size();

            set<int> set;

              // initialize the window

            for(int j = 0; j <=k && j < n; ++j) {

                if(set.count(nums[j]) == 1) {

                    return true;

                }

            set.insert(nums[j]);

            }

        

            for(int i = 1; i+k<n; ++i) { // O(n) times

                set.erase(nums[i-1]);

                if(set.count(nums[i+k]) == 1) {

                    return true;

                }

                set.insert(nums[i+k]);

            }

            return false;

        }




Complexity analysis:
We use a balanced BST which taken O(logn) for basic operations and insertion and deletion has to be done for n-k+1 windows. Hence the time complexity of the algorithm is O(nlogn) as k<=n. As we use a balanced BST, it constributes as an extra space of O(n) as k<=n.

Solution 3: Using Hash Table - O(n) time, O(k) extra space

Solution 2 can be made efficient by using choosing a more efficient data structure for the purpose. We can use a Hash Table(Unordered Sets) instead of a balanced BST(Set) as in a Hash Table, basic operations take constant time.
Rest all implementation details and algorithm of solution 3 is same as in solution 2 discussed above. 

    bool lineartime(vector<int>& nums, int k) {

        int n = nums.size();

        unordered_set<int> set;

        for(int j = 0; j <=k && j < n; ++j) {

            if(set.count(nums[j]) == 1) {

                return true;

            }

            set.insert(nums[j]);

        }

        

        for(int i = 1; i+k<n; ++i) { // O(n) times

            set.erase(nums[i-1]);

            if(set.count(nums[i+k]) == 1) {

                return true;

            }

            set.insert(nums[i+k]);

        }

        return false;

    }


Complexity analysis:
Space complexity is same as solution 2 which is linear. Use of Hash Table based data structure makes insert and erase work in constant time and hence for n-k+1 windows, the overall time complexity will effectively be on a average O(n) as k<=n when compared to O(nlogn) of previous solution.

3. Contains Duplicate - III

The given problem is same as Contains Duplicate-II, but with an extra constraint that the window [i, j] should also satisfy the condition that abs(nums[i] - nums[j]) <= t.  In the example discussed for the above problem, we had got [1, 2, 2], [1, 2], [2, 2, 1], [1, 2, 2], [2, 1], [2, 2, 1] and for t = 2, the array also satisfies the desired constraints for the current problem as in the 1st subarray itself we have (2-1 = 1) <= (t = 2).

Solution 1: Using Ordered Set - O(nlogk) time and O(k) extra space

The solution to this problem will have all the concepts from Contains Duplicate-II solution using a set/balanced BST and some extra concepts. We use lower_bound function which is efficient in a balanced BST rather than a Hash Table to check if an element is in the range nums[i+k]-t to nums[i+k]+t for every nums[i]. 
To cover both index range and value range validity in one condition, we check if the lower bound of nums[i+k] - t and lower bound of nums[i+k]+t+1 which is outside the desired range num[i+k]-t and nums[i+k]+t are not equal. If the iterators returned by the mentioned lower bound calls are not equal, then we have found a subarray which matches the description of the problem and hence return true. On sliding the window, we remove the element at the tail of the set and add the new element that slid in as usual. 

NOTE: We need to take care the overflow of nums[i+k]+t+1 and underflow of nums[i+k]-t. So if nums[i+k]+t+1 > INT_MAX, then set it to INT_MAX and if nums[i+k]-t < INT_MIN, then set it to INT_MIN.

    

    bool orderedset(vector<int>& nums, int k, int t) {

        int n = nums.size();

        set<int> set;

        for(int j = 0; j <=k && j < n; ++j) {

            int lb = (nums[j] <= INT_MIN + t) ? INT_MIN : (nums[j] - t);

            int ub = (nums[j] >= INT_MAX - t - 1) ? INT_MAX : (nums[j] + t + 1);

            if(set.lower_bound(lb) != set.lower_bound(ub)) { // O(log k) time

                return true;

            }

            set.insert(nums[j]);

        }

        

        for(int i = 1; i+k<n; ++i) { // O(n) times

            set.erase(nums[i-1]);

            

            // see if any entry is in the range nums[i+k]-t to nums[i+k]+t

            int lb = (nums[i+k] <= INT_MIN + t) ? INT_MIN : (nums[i+k] - t);

            int ub = (nums[i+k] >= INT_MAX - t - 1) ? INT_MAX : (nums[i+k] + t + 1);

            if(set.lower_bound(lb) != set.lower_bound(ub)) { // O(log k) time

                return true;

            }

            set.insert(nums[i+k]);

        }

        return false;

    }


NOTE:
set_name.lower_bound(key); returns the iterator to the key in the set. If key is not present, then it returns an iterator pointing to the immediate next element which is greater than k. In simple words, it returns a iterator to a value whose magnitude is "atleast key"(value >= key) in the container which is exactly one of the constraint in the problem.

Complexity analysis:
Finding lower_bound on a balanced BST is analogous to search which takes O(logk). Hence finding lower found for n-k+1 windows will effectively give a time complexity of O(nlogn) as k<=n. Use of set data structures takes O(k) or O(n) extra space.

Comments

Popular posts from this blog